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Abstract

Extreme weather and climate-related events affect human health by causing death, injury, and 

illness, as well as having large socioeconomic impacts. Climate change has caused changes in 

extreme event frequency, intensity, and geographic distribution, and will continue to be a driver for 

change in the future. Some of these events include heat waves, droughts, wildfires, dust storms, 

flooding rains, coastal flooding, storm surges, and hurricanes. The pathways connecting extreme 

events to health outcomes and economic losses can be diverse and complex. The difficulty in 

predicting these relationships comes from the local societal and environmental factors that affect 

disease burden. More information is needed about the impacts of climate change on public health 

and economies to effectively plan for and adapt to climate change. This paper describes some of 

the ways extreme events are changing and provides examples of the potential impacts on human 

health and infrastructure. It also identifies key research gaps to be addressed to improve the 

resilience of public health to extreme events in the future.

Implications: Extreme weather and climate events affect human health by causing death, injury, 

and illness, as well as having large socioeconomic impacts. Climate change has caused changes 

in extreme event frequency, intensity, and geographic distribution, and will continue to be a driver 
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for change in the future. Some of these events include heat waves, droughts, wildfires, flooding 

rains, coastal flooding, surges, and hurricanes. The pathways connecting extreme events to health 

outcomes and economic losses can be diverse and complex. The difficulty in predicting these 

relationships comes from the local societal and environmental factors that affect disease burden.

Introduction

Extreme weather and climate-related events are known to cause essential infrastructure 

failures, economic losses, and population displacements, leading to a variety of resulting 

health issues (Bell et al. 2016). While there is no single definition of an extreme event, for 

the purposes of this paper they are considered weather and climate-related events that rarely 

occur at a given location or have significant socioeconomic impacts. Weather and climate 

both contribute to extreme events, and over the last century the frequency and intensity of 

some extreme events have changed (Field 2012; Melillo, Richmond, and Yohe 2014; Stocker 

et al. 2013). The National Climate Assessment states that “human-induced climate change is 

projected to continue, and it will accelerate significantly if global emissions of heat-trapping 

gases continue to increase” (Field 2012; Melillo, Richmond, and Yohe 2014; Stocker et al. 

2013). Thus, past exposure to extremes may not be a predictor of future risk. Understanding 

the observed changes to date and expectations of future extreme event risk are critical in 

developing public health systems resilient to extremes.

This paper focuses on key extreme events for which the changes in frequency, intensity, 

and geographic distribution have been linked to anthropogenic climate change. These events 

include heat waves, droughts, wildfires, dust storms, flooding rains, hurricanes, coastal 

flooding, and storm surge. Other extreme events have significant public health consequences 

but there is a lack of sufficient understanding of how climate change is related to these 

events (such as for tornadoes). Included are descriptions of observed and projected changes 

in extreme events and general health effects, providing a concept of observed associations 

and potential mechanisms, and exemplified by specific events. The paper concludes with 

an identification of research gaps and innovative research approaches, both of which have 

public health implications for improving resiliency to extreme events. The focus of this 

paper is on the United States; however, international examples are incorporated as an 

illustration of key events.

Infrastructure impacts

Extreme events can overburden or disrupt essential infrastructure access and functionality. 

Essential infrastructure includes public health facilities, transportation infrastructure such as 

roads and trains, energy grids, and water treatment. Depending on the severity and location 

of the extreme event, infrastructural systems can either act as a safeguard against excess 

health impacts or exacerbate potential health threats (Srinivasan, O’Fallon, and Dearry 

2003). Disruptions of essential infrastructure can impede evacuation from hazardous areas, 

slow the delivery of essential health care, and add burden to individuals experiencing an 

extreme event (Deshmukh, Oh, and Hastak 2011; Skinner, Yantzi, and Rosenberg 2009). In 

addition, many infrastructure systems are reliant on one another, risking a cascading failure 

resulting from the disruption or failure of one system leading to the disruption of other 
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interconnected systems (Bell et al. 2016). A commonly occurring cascading failure is when 

loss of electricity subsequently leads to failures in hospital facilities, public transportation, 

and water and sewage treatment systems (Klinger, Landeg, and Murray 2014). This was 

exemplified by the 2003 blackout related to a heat wave in the northeastern United 

States that led to failure of hospital emergency generators, untreated sewage, and food 

contamination from loss of refrigeration (Freese et al. 2006; Kile et al. 2005; Klein et al. 

2007; Prezant et al. 2005), increasing the incidence of total mortality and gastrointestinal 

illnesses in New York City (Anderson and Bell 2012; Beatty et al. 2006; Lin et al. 2011). 

Although cascading failures can be local, it is important to understand that these failures can 

extend beyond the location of the extreme event to systems of the surrounding area.

Not all infrastructure is built to compensate for local extreme event magnitude and 

severity, increasing risk of failure during an extreme event. Current infrastructure in many 

communities is designed to perform at a capacity assuming historical weather patterns, 

though as the frequency and intensity of extreme events shift, the performance capabilities 

are compromised (Dell et al. 2014; Fennell et al. 2015). For example, dams designed 

for a certain maximum precipitation estimate may be underengineered, given that extreme 

precipitation events are becoming more intense (Groisman et al. 2005). These discrepancies 

between past, present, and future extremes can cause failures that potentially lead to negative 

health outcomes.

Economic loss

Just as extreme events can disrupt infrastructure, they can also cause catastrophic economic 

losses. A report series by the National Oceanic and Atmospheric Administration (NOAA) 

on U.S. billion-dollar disasters assesses the total, direct losses from numerous disasters, 

including hurricanes, floods, drought and heat waves, severe local storms (i.e., tornado, 

hail, and straight-line wind damage), wildfires, crop freeze events, and winter storms 

(National Centers for Environmental Information [NCEI] 2017). These loss estimates reflect 

only the direct effects of events on constitute total losses, both insured and uninsured. 

The insured and uninsured direct loss components include physical damage to residential, 

commercial, and government/municipal buildings, material assets within a building, time 

element losses (i.e., businesses interruption), vehicles, boats, offshore energy platforms, 

public infrastructure (i.e., roads, bridges, buildings), and agricultural assets (i.e., crops, 

livestock, timber). These disaster cost assessments incorporate input from a variety of public 

and private data sources (Smith and Katz 2013).

Since 1980, the United States has sustained more than 200 extreme event disasters in which 

the overall damage costs reached or exceeded US$1 billion, including adjustments based 

on the present Consumer Price Index (CPI). This section only reports the CPI adjusted 

costs. The cumulative costs of these events exceed $1.1 trillion (NCEI 2017). Just in 2016, 

there were 15 extreme events with losses exceeding $1 billion across the United States. 

These events included a drought, a wildfire, four inland floods (i.e., nontropical), eight 

severe storms, and a hurricane (Figure 1), resulting in 138 fatalities and $46 billion in 

total, direct costs (NCEI 2017). The year 2016 had the second highest annual number of 

U.S. billion-dollar disasters, behind 2011, in which 16 events occurred. In recent years, the 
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United States has experienced a higher frequency of billion-dollar inland flood events, and 

2016 doubled the previous annual record, set in 1980, for number of billion-dollar inland 

flood events. Inland flood events are particularly costly, as a high percentage of the damage 

is uninsured (Smith and Matthews 2015).

There has been a rising number of events that cause significant amounts of damage in the 

United States. During 1980–2016, the annual average number of billion-dollar events was 

5.5. For the most recent 5 years (2012–2016), the annual average is 10.6 events. The year 

2005 was the costliest since 1980 due to the combined impacts of Hurricanes Katrina, Rita, 

Wilma, and Dennis, as losses exceed $200 billion. The year 2012 was the second costliest 

year due to the historic U.S. drought costing $30 billion, Hurricane Sandy costing $65 

billion, and other billion-dollar events creating losses in excess of $120 billion (Figure 2). 

Once the damage costs are assessed for 2017, these rankings may change.

It is important to note that increases in damage costs over recent years are also affected 

by increased development in vulnerable areas. Coasts and floodplains are particularly at 

risk to extreme events, and have also seen growth in population and infrastructure over 

the last several decades (Moser et al. 2014). Increases in population and material wealth 

may exacerbate the damage costs of an extreme event. Additionally, minimum standards of 

building codes are not always sufficient to reduce significant damage from extreme events 

(Zoraster 2010).

Hurricanes tend to result in the costliest damages in the United States. During 1980–2016, 

hurricanes caused $560.1 billion worth of damage and had the highest average event cost at 

$16 billion per event. Drought ($223.8 billion), severe storms ($180.1 billion), and inland 

flooding ($110.7 billion) have resulted in the second, third, and fourth highest levels of 

damage costs. Severe storms have caused the highest number of billion-dollar disaster events 

(83), while the average event cost is the lowest at $2.2 billion. Hurricanes and inland 

flooding represent the second and third most frequent event types, 35 and 26, respectively, as 

of January 2017.

The distribution of fatalities by disaster type is similar to the cost distribution. Hurricanes 

are responsible for the highest number of deaths (3,210 between 1980 and 2016), followed 

by drought and heat-wave events (2,993) and severe storms (1,546). Over the last several 

decades, U.S. disaster event costs have increased while deaths have generally decreased, in 

part due to greater awareness and preparation for extreme events. However, there have been 

notable outliers to the trend of lower fatalities, such as Hurricane Katrina (~1,833 deaths) 

and the severe tornado outbreaks of 2011 (~550 deaths).

It remains difficult to quantify how much of the rising costs of extreme events is due to 

demographic and economic changes, and what role climate change has played. However, 

there are qualitative linkages to economic impacts. For example, for Superstorm Sandy, 

the storm surge that caused the majority of the economic damage was likely made worse 

by climate-change-induced sea-level rise (Sweet et al. 2016). Similarly, there is evidence 

linking increases in wildfires in the western United States to climate change (Melillo, 

Richmond, and Yohe 2014; Karl, Melillo, and Peterson 2009).
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As extreme events continue to increase in severity and frequency and communities continue 

to expand and develop, the historical patterns of economic loss during these events will 

likely continue to increase in the future. The rates and severity of these losses will likely 

depend on a variety of factors, including rates of development, planning and preparation, and 

changes in the economy.

Population of concern

Climate change is a significant threat to the health of the American people and others 

around the world (Crimmins et al. 2016; Field 2012; Frumkin et al. 2008; Haines et al. 

2006). Because of the ubiquitous nature of climate change, every person is at some level 

of risk, though particular populations, based on local exposure, sensitivity, and adaptive 

capacity, are especially vulnerable to the health impacts of climate change (Gamble et 

al. 2016). Environmental and social factors can have a significant influence on the extent 

to which individuals are affected by changes in climate and weather. Sensitivity to these 

impacts is intrinsic to factors related to underlying health conditions, socioeconomic 

circumstances, and population demographics (Frumkin et al. 2008; Penner and Wachsmuth 

2008). Generally, populations with fewer resources or individuals with chronic health 

conditions are more sensitive and have lower adaptive capacity to threats associated with 

extreme events and changes in climate (Keppel 2007). Health risks can also vary based 

on the underlying risks that already exist in a geographic location. For example, under 

environmental stress, a previously existing threat, such as a Vibrio bacteria, can expand its 

geographic and temporal range to occur in populations that previously were not exposed 

(Centers for Disease Control and Prevention [CDC] 2005). Extreme events pose a variety of 

health risks that can sometimes be difficult to identify because the health outcomes can be 

combinations of direct, indirect, and delayed impacts (McMichael and Lindgren 2011).

Although many locations will experience the impacts from changes in extreme events, 

coastal regions and the people that live there are uniquely vulnerable to the impacts that 

accompany climate change for several reasons. First, large portions of the earth’s population 

lives near or along the coastline, and that population is growing due to migration to 

coastal areas (Hallegatte et al. 2013). Second, greater hurricane intensity and more extreme 

precipitation events increase flooding risk (Melillo, Richmond, and Yohe 2014). Third, 

sea-level rise results in more significant storm surge and extreme tidal flooding that can 

impact infrastructure and water quality (Sweet et al. 2016). The combination of these factors 

increases the risk of coastal hazards and the associated health effects (Bell et al. 2016).

Temperature extremes

Observed changes

As climate change has resulted in a rise of the global mean temperature, there has been an 

increase in the frequency and severity of heat waves in many parts of the world. A heat wave 

that persisted throughout the summer of 2003 brought to the European continent devastating 

impacts that included approximately 40,000 additional deaths and a failure of social and 

health systems to adequately respond (García-Herrera et al. 2010; Russo, Sillmann, and 

Fischer 2015). Remarkably, the magnitude and spatial extent of the 2003 European heat 
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wave were exceeded only 7 years later by a heat wave that struck Russia, leading to as 

many as 55,000 deaths and ~$15 billion of total economic loss attributed to the heat-wave 

event (Barriopedro et al. 2011). Both of these events were found to have been worse due to 

anthropogenic climate change (Dole et al. 2011; Otto et al. 2012; Rahmstorf and Coumou 

2011; Stott, Stone, and Allen 2004). In addition, one estimate of the 2003 European heat 

wave found that “out of the estimated ~315 and ~735 summer deaths directly attributed to 

the heat wave event in Greater London and Central Paris, respectively, 64 (±3) deaths were 

attributable to anthropogenic climate change in London, and 506 (±51) in Paris” (Mitchell 

et al. 2016). Another example is the early 2017 heat wave that struck Australia and eclipsed 

the temperature records last set in 1939 across eastern and central areas of the continent. The 

record hot summer in New South Wales was found to be linked directly to climate change. 

Maximum temperatures of the magnitude seen in the 2016–2017 southeastern Australia 

summer were found to be at least 10 times more likely today than at the start of the 20th 

century (Climate Central 2017). In the United States, more than $44 billion in losses resulted 

from the heat waves and droughts of 2011 and 2012 (NCEI 2017). In some areas, high 

temperatures exceeded the records of the Dust Bowl era in the 1930s. July 2012 had the 

hottest contiguous U.S. temperature for any month since national records began (Blunden et 

al. 2013).

Many of the most severe and long-lasting heat waves are linked to periods of extreme 

drought and low humidity. However, heat waves can be exacerbated by persistently warm 

overnight temperatures, such as during the short but intense Chicago heat wave of 1995 

when unusually high humidity occurred with extremely warm temperatures and led to more 

than 500 deaths in the city and more than 800 nationally (Changnon, Kunkel, and Reinke 

1996; Kaiser et al. 2007). Global daily minimum temperatures have had a greater increase 

than daily maximum temperatures since the middle of the 20th century (Melillo, Richmond, 

and Yohe 2014), making such events as the Chicago heat wave more likely to occur. In some 

areas, such as the Asia-Pacific region and parts of Eurasia, there has been nearly a doubling 

of the occurrence of warm nights, defined as temperatures in the upper 90th percentile (Choi 

et al. 2009; Donat et al. 2013).

In the United States, the spatial extent of extremes in high minimum and maximum 

temperature has been increasing in recent decades. On an annual basis, much above normal 

maximum temperatures (upper 10th percentile for the period of record) covered more than 

20% of the contiguous United States for 12 of the last twenty-seven years, since 1990. 

More than 60% of the country was affected in 2012 and 2016, eclipsing the worst of the 

1930s Dust Bowl era (Figure 3a). Warm extremes in minimum temperature have been even 

more widespread in recent decades. More than 70% of the contiguous United States was 

affected by much above normal minimum temperatures (upper 10th percentile for the period 

of record) in three of the past 5 years (Figure 3b) (Gleason et al. 2008). A metric of 

short-duration extreme heat (4-day mean temperatures exceeding a threshold for a 1-in-5 

year recurrence) indicates a consistently above average number of occurrences in the 1980s 

and 2000s, though the 1930s experienced higher numbers (Figure 4). The high number of 

short-duration heat waves in the 1930s reflects the multiyear severe drought of the Dust 

Bowl period, combined with deleterious land-use practices. This contributed to the intense 
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summer heat through depletion of soil moisture and reduction of the moderating effects of 

evaporation (Walsh et al. 2014).

As greenhouse gas concentrations continue to rise, model projections show the incidence 

and severity of heat waves increasing in all regions of the world throughout the 21st century 

(Field 2012; Melillo, Richmond, and Yohe 2014; Stocker et al. 2013). In the United States, 

summer temperatures are projected to continue rising, most sharply in central and western 

areas of the country where greater summer reductions in soil moisture are projected to occur 

(Melillo, Richmond, and Yohe 2014). Some projections show that heat waves that were 

historically a once-in-20-year event will occur every 2 or 3 years over much of the nation 

by the latter half of this century (Kharin et al. 2013). By the end of this century, under the 

Intergovernmental Panel for Climate Change Fifth Assessment highest projections (AR5) of 

increasing greenhouse gases, events of the same severity as that in Russia in the summer of 

2010 will become the norm and are projected to occur as often as every 2 years in regions 

such as southern Europe, North America, South America, Africa, and Indonesia (Russo et al. 

2014).

While the frequency of extremely warm temperatures and heat waves has increased, 

the incidence of unusually cold conditions in many parts of the world has decreased 

significantly since the 1950s (Donat et al. 2013). For example, in 2015, 16% of the earth 

with at least 100 years of data experienced an extreme (first, second, or third) warm year, 

while only 0.2% had an extreme cold year (Kam et al. 2016). In 2014, 12% of the earth 

had an extreme warm year, whereas nowhere on Earth had an extreme cold year (Kam et 

al. 2015). Using anthropogenic versus natural forcing with climate models, it was found 

that both of these extreme warm years were largely due to increases in greenhouse gases. 

In the United States, the decade of the 2000s had the fewest number of cold waves since 

1895 (Figure 5) (Peterson, Stott, and Herring 2012). The reduction in cold outbreaks also 

is reflected in an average of twice as many record high maximum temperatures than record 

low minimum temperatures across the United States since the late 1990s (Meehl et al. 2009). 

Models project robust decreases in cold extremes by the end of the 21st century, with the 

magnitude of the changes dependent on the increase in greenhouse gas concentrations. The 

coldest night of the year is projected to increase more than the hottest day with the largest 

increases in the high latitudes of the Northern Hemisphere (Stocker et al. 2013). At the 

same time, winter storm tracks have shifted northward and their intensity and frequency has 

increased since the 1950s (Melillo, Richmond, and Yohe 2014).

Health impacts

Research has shown that short-term increases in mortality and morbidity occur during 

periods of high heat (Basu 2002; Braga, Zanobetti, and Schwartz 2001; Melillo, Richmond, 

and Yohe 2014; Sarofim et al. 2016). While several biological explanations for these 

increases exist, heat-related illness and death are predominantly related to the concept of 

thermoregulation, the ability to manage one’s body temperature. When an individual is 

exposed to extreme heat, the body responds by reallocating blood flow from the vital organs 

in the central portion of the body to below the skin’s surface, believed to be a mechanism 

to cool the overall system. When a person is unable to thermoregulate effectively due to 

Bell et al. Page 7

J Air Waste Manag Assoc. Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dehydration, aging, medication use, or chronic health conditions (e.g., diabetes) the body 

reallocates too much blood from the vital organs, resulting in increased stress on the heart 

and lungs, which can contribute to severe illness and other fatal health events (Astrand et al. 

2003).

Epidemiological research has shown that heat-related mortality is dependent on the severity 

of the heat event and the health status of the affected population (Hajat et al. 2006; 

Sarofim et al. 2016). Older populations are at higher risk to the impacts of extreme 

temperatures (Bobb et al. 2014). Older populations, particularly those over the age of 

65 years, and children have a higher risk of heat-related illness and death (Sarofim et 

al. 2016; Zanobetti et al. 2012). Older adults often have preexisting health conditions 

such as cardiovascular, respiratory, renal, and neurological diseases that can interfere with 

their body’s ability to respond to heat stress (Schwartz 2005; Stafoggia et al. 2006). 

Demographic and socioeconomic factors such as being non-Hispanic black (Berko et al. 

2014; O’Neill, Zanobetti, and Schwartz 2005), low-income (Madrigano et al. 2013), high 

school educated or less (Medina-Ramón et al. 2006), living alone (Madrigano et al. 2013), 

and lacking access to transportation (Klinenberg 2003) and to air conditioning (O’Neill, 

Zanobetti, and Schwartz 2005) put individuals at risk to heat-related illness and death. 

Community-level characteristics, such as having access to green space (Tan et al. 2010), 

may protect populations. Reductions in green space combined with increasing temperatures 

may expose more individuals to harmful temperatures in the future (Conlon et al. 2016). 

Urban populations face elevated heat exposures from the urban heat island effect, where 

urban areas are warmer than surrounding rural areas due to land cover and building surfaces 

that absorb heat during the day and slowly release heat at night, causing warmer evening 

temperatures and decreased evapotranspiration (CDC 2013; Wilby 2008). It should also be 

noted that temperature variability, which will likely increase with climate change, also leads 

to negative health outcomes (Shi et al. 2016).

Temperature-related illness and death are likely underestimated, given the challenges in 

consistent reporting by clinicians. Often, death certificates and hospitalization records do not 

explicitly state that an individual had a temperature-related response (Sarofim et al. 2016), 

especially when temperature is not directly identified as a contributing factor.

Although unusually high temperatures in recent decades have garnered much attention, cold 

temperatures, while anticipated to be fewer in the future, can cause a substantial health 

burden. A recent study identified that deaths due to cold accounted for the majority of 

temperature-related mortality (Gasparrini et al. 2015). When a person experiences cold 

temperatures, that person’s ability to thermoregulate is impaired, leading to reduced core 

temperatures (e.g., hypothermia). In response, the body redistributes heat, eventually at the 

expense of cardiac and cerebrovascular functions. Impacts of exposure to cold temperatures 

can range from frostbite, to hypothermia, cardiac arrhythmias, cardiac arrest, and loss 

of cerebral blood flow (Capon, Demeurisse, and Zheng 1992; Lloyd 1991). Like heat 

vulnerability, cold-related health impacts are driven by age, socioeconomic status, and where 

one lives (Anderson and Bell 2009; Gasparrini et al. 2015). Heat-related health impacts are 

expected to be greater than the reduction in cold-related health impacts as climate change 

continues in the future (Sarofim et al. 2016).
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Air pollution has shown to worsen as warmer temperatures facilitate ground-level ozone 

formation, a key component of smog. Increases in ground-level ozone occur as a result of 

both natural processes (e.g., wildfires and vegetation) and human activities (e.g., power 

generation and motor vehicles), while also being exacerbated by warmer temperatures 

(Bloomer et al. 2009; Weaver et al. 2009). Increases in ground-level ozone have been 

associated with reduced lung function, increasing hospital admittance and emergency 

department visits (Bell et al. 2004; U.S. EPA 2013; Gonçalves et al. 2007; Jerrett et al. 

2009), and are projected to worsen due to climate change (Sheffield et al. 2011; Shen, 

Mickley, and Gilleland 2016).

Respiratory health is additionally compromised as warmer temperatures increase 

aeroallergens. Warmer temperatures and increased carbon dioxide levels promote plant 

growth, shifting outdoor aeroallergen production and timing, reducing air quality. Over 

recent decades, pollen seasons for some species have started earlier and lasted longer 

(Bielory, Lyons, and Goldberg 2012; Ziska et al. 2011), while pollen concentrations have 

increased (Albertine et al. 2014; Beggs 2004; D’Amato et al. 2013). Longer pollen seasons 

and higher pollen concentrations are associated with increases in allergic rhinitis and asthma 

prevalence, causing increased emergency department visits and school days lost for children 

(Bielory, Lyons, and Goldberg 2012; Blando et al. 2012).

Temperature has relevant effects on the transmission of vector-borne diseases, such as 

West Nile virus and Lyme disease. For example, extended spring and summer seasons 

associated with warmer temperatures have the potential to increase exposure risk or disease 

transmission (Beard et al. 2016). In the case of Lyme disease, warmer winter and spring 

temperatures are projected to lead to earlier timing in which ticks seek hosts, and thus earlier 

onset of Lyme disease cases (Levi et al. 2015). Additionally, warmer temperatures may 

accelerate the tick life cycle, increasing the likelihood of tick survival to reproduce (Ogden 

et al. 2014). Similarly for mosquitoes, which carry diseases like West Nile virus, warmer 

temperatures may increase the mosquito season as well as speed up the mosquito life cycle, 

leading to larger populations (Reisen et al. 2008) and faster virus replication (Kilpatrick et 

al. 2008), which is thought to have been the underlying factor in the 2012 West Nile virus 

outbreak in Texas (Chung et al. 2013).

Food- and waterborne illnesses are expected to be influenced by warmer temperatures as 

the habitat, transmission, seasonality, and viability of toxins and pathogens are altered. 

While these are more of an issue in developing countries, there is still a rising concern 

about the impacts of heat and precipitation on the spread of pathogens. Cyanobacteria, 
Cryptosporidium, Giardia, and Vibrio bacteria have been shown to increase in prevalence in 

warmer air and water conditions, causing increased incidence of waterborne illnesses (Trtanj 

et al. 2016).

Warmer temperatures may increase the reproduction and infectious dose of foodborne 

pathogens such as Salmonella and Escherichia coli (Juneja et al. 2007). Warmer air and 

water temperatures may increase pathogen incidence on produce or in seafood, causing 

gastrointestinal illnesses (Ziska et al. 2016). It is important to note that while prevalence 

of some pathogens tends to be higher during warmer temperatures, trends vary based on 

Bell et al. Page 9

J Air Waste Manag Assoc. Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



location and pathogen type, and can be additionally affected by either increased or decreased 

precipitation.

Droughts and wildfires

Observed changes

Over the past 50 years, drought frequency and intensity have increased with rising 

temperatures and changing precipitation patterns for some parts of the globe (Trenberth 

et al. 2014). In the United States, these trends are particularly evident in the western and 

southwestern parts of the country (Melillo, Richmond, and Yohe 2014). In addition to 

changes in precipitation patterns, there is evidence of decreasing water runoff from spring 

snowpack and shifts to earlier peak flow, which sustains snow-fed rivers (Vaughan et al. 

2013). In addition, warmer temperatures caused by climate change are contributing to 

“snowpack droughts” in the western United States (Fosu, Simon Wang, and Yoon 2016). 

As populations grow, the demand for water has also increased (Intergovernmental Panel 

on Climate Change [IPCC] 2014; Maupin et al. 2014). The combination of the increased 

stress to water supplies and changes to precipitation patterns decreases water availability and 

amplifies water insecurity.

During 1981–2016, the United States had 24 drought events that exceeded a billion U.S. 

dollars in damages. The total costs of these events surpassed $226 billion (Smith and 

Matthews 2015). The heat waves associated with these drought events caused an estimated 

2,993 deaths (NCEI 2017). According to EM-DAT, an international emergency events 

database, international droughts, and the resulting famines, produced more deaths than 

any other climate-related disaster (Keim 2015). A number of recent droughts have caused 

both national and international crises. Australia experienced a historic once-in-a-millennium 

drought that lasted from 1995 to 2009 (Dijk et al. 2013). The recent Mediterranean 

drought lasted for 15 years, causing political instability and turmoil, and was estimated 

to be the worst drought event for that region over the past 900 years (Cook et al. 2016; 

Gleick 2014; Nicault et al. 2008). Kenya is currently experiencing drought that has lasted 

since 2014 and doubled the number of people living with food insecurity (United Nations 

Office for the Coordination of Humanitarian Affairs [UNOCHA] 2017). California recently 

came out of a multiple-year historic drought that caused billions of dollars of economic 

damage (Smith and Matthews 2015). The link between the severity of droughts and climate 

change is not always apparent. However, the knowledge and capabilities to identify these 

relationships have increased. Recent work has shown that several droughts, including events 

in Ethiopia and Southern Africa (Funk et al. 2016), Indonesia (King, Karoly, and Jan Van 

Oldenborgh 2016), western Canada (Szeto et al. 2016), and the California drought (Griffin 

and Anchukaitis 2014; Williams et al. 2015), were worsened by climate change.

Drought also has secondary impacts, such as dust storms and wildfires. In parts of the world, 

including the western United States, wildfire season has shifted and extended, starting earlier 

in the spring and ending later in the fall (Melillo, Richmond, and Yohe 2014; Karl, Melillo, 

and Peterson 2009). The number of acres burned increased over time. One study found that 

climate change doubled the cumulative forest fire area since 1984, and that anthropogenic 

climate change will continue to chronically enhance the potential for western U.S. forest fire 
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activity while fuels are not limiting (Abatzoglou and Park Williams 2016). Although some 

regions of the world have experienced a decrease in dust storm activity, the intensification of 

dust storms in the southwestern United States has been associated with changes in climate 

(Tong et al. 2017).

Health impacts

Droughts can cause detrimental effects on human health as they often occur in concert 

with other meteorological conditions such as heat waves, wildfires, and dust storms. These 

pathways to health outcomes can be direct and indirect, with the indirect pathways being 

very complex and variable (Stanke et al. 2013). However, the direct impacts of drought are 

generally reduced freshwater availability and increased contamination. Reduced freshwater 

availability particularly affects households, businesses, and communities that are directly 

involved in agriculture and production. The drought that occurred in the United States in 

2011 and 2012 resulted in the U.S. Department of Agriculture to declare over 1,300 counties 

across the country as drought disaster areas. Economic insecurity for populations who rely 

on water access and use can cause excess stress, potentially causing mental health issues 

(Vins et al. 2015).

In addition to reduced water availability, periods of drought can compromise the quality 

of water. During periods of drought, reduced water quantity can cause decreased water 

flow, encouraging production of pathogens that favor warm, stagnant environments (Delpla 

et al. 2009; Whitehead et al. 2009). Consumption or contact with water that contains 

pathogens such as Vibrio species may result in ear, eye, and wound infections, diarrheal 

illness, and death (Trtanj et al. 2016). Additionally, coastal droughts can result in saltwater 

contamination of primary freshwater sources, as lower freshwater levels and higher sea 

levels promote saltwater intrusion (Trtanj et al. 2016).

Droughts have been linked to changes in vector-borne disease distribution, particularly for 

mosquitoes, as they rely on stagnant water to reproduce. In some areas, mosquitoes that 

carry West Nile virus (WNV) are more likely to come in contact with birds infected with 

WNV as there are fewer water resources, increasing the risk of cohabitation and, thus, WNV 

transmission (Johnson and Sukhdeo 2013).

Droughts produce conditions that are conducive to dust storms, which increase particulate 

matter distribution and concentrations in the air, causing respiratory illnesses like Valley 

fever (Coopersmith et al. 2017; Peterson et al. 2014; Tong et al. 2017). Chronic exposure 

to particulates may contribute to cardiovascular disease (Puett et al. 2008), suggesting that 

persisting drought conditions could magnify the risk of heart disease (Crooks et al. 2016). 

Evidence has also found that dust and dust storms cause nonaccidental mortality (Crooks et 

al. 2016) and traffic fatalities (Ashley et al. 2015).

With wildfires becoming more common and intense in many parts of the United States, 

particularly the western states, there are significant direct and indirect impacts on human 

health (Liu et al. 2017). Premature death, burn injuries, posttraumatic stress disorder 

(PTSD) (Bell et al. 2016), and acute exacerbation of respiratory conditions such as asthma 

(Elliott, Henderson, and Wan 2013), shortness of breath (Delfino et al. 2009), decreased 
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lung function (Youssouf et al. 2014), and chronic obstructive pulmonary disease (COPD) 

(Henderson et al. 2011) are, perhaps, the most direct outcomes of wildfire exposure. 

Wildfires release toxic air pollutants (e.g., CO, O3, PM2.5, PM10) that contribute to 

respiratory illness and can expose communities up to 1,000 miles away and for up to several 

weeks after the event (Naeher et al. 2007; Sapkota et al. 2005). Wildfire smoke has also been 

associated with low birth weight among babies born to women who were pregnant during 

a wildfire event (Holstius et al. 2012). The most vulnerable to the smoke-related impacts of 

wildfires are those with cardiopulmonary and respiratory diseases, the elderly, smokers, and 

firefighters (Youssouf et al. 2014).

Population displacement from wildfires and drought can lead to myriad outcomes ranging 

from strain on mental health status to impacts on the health care system. Loss of one’s 

family members, home, and livelihood can substantially impact a person’s mental wellbeing. 

Disaster events, such as droughts and wildfires, are associated with a high burden of PTSD 

(Galea, Nandi, and Vlahov 2005). Large wildfires often result in evacuating residential 

populations. This is especially important as the interfaces between urban areas and natural 

areas are coming into more contact with the expansion of cities (Radeloff et al. 2005). 

Evacuated individuals may experience mental stress and hardship in leaving one’s property 

and possessions in the midst of a wildfire. Public health systems and responders can be 

faced with a large influx of patients, potentially overwhelming care facilities and response 

systems.

Extreme precipitation, flooding, and hurricanes

Observed changes

Although some regions of the world are expected to get dryer, other regions will experience 

an increase in precipitation because of climate change. In the United States, the East 

and Northeast are expected to receive more annual precipitation. Because of the physical 

relationship between temperature and atmospheric moisture holding capacity, as described 

by the Clausius–Clapeyron relationship, extreme precipitation is expected to increase 

and the number of days without precipitation will also increase with warming (Balbus 

et al. 2016; Melillo, Richmond, and Yohe 2014). The general relationship between the 

hydrologic cycle and increasing temperature is apparent and fairly well understood. Higher 

temperatures allow for more moisture to be stored in the atmosphere. When this moisture is 

released as precipitation, the events can cause intense downpours or flooding rains (Kunkel 

et al. 2013b). Analysis of historical data suggests that the intensity and frequency of heavy 

downpours has increased globally during the last century (Kunkel et al. 2013a). Future 

model results also suggest that these events will continue to increase in the future as global 

temperatures continue to rise (Stocker et al. 2013). As a result, parts of the world, such 

as the U.S. Midwest and Northeast, have seen an increase in flooding (Melillo, Richmond, 

and Yohe 2014). This increase is likely the result of changes in precipitation, in addition 

to changes in manmade infrastructure that influences runoff. The impacts of these flooding 

events can be severe and cause large financial losses. There are several examples of flooding 

events in recent years that have caused such outcomes.

Bell et al. Page 12

J Air Waste Manag Assoc. Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There has been a substantial increase in most measures of Atlantic hurricane activity 

since the 1980s (Melillo, Richmond, and Yohe 2014). These include measures of intensity, 

frequency, duration, and the number of strongest (Category 4 and 5) storms. Procedures 

and capabilities for monitoring hurricanes have changed substantially through time (Hagen 

and Landsea 2012; Knapp and Kruk 2010; Kossin, Olander, and Knapp 2013; Landsea 

et al. 2010; Vecchi and Knutson 2008). These data are most reliable since high-quality 

remotely sensed observations were introduced in the early 1980s (Hennon et al. 2015; 

Kossin, Olander, and Knapp 2013; Schreck et al. 2014; Velden et al. 2006). Uncertainties 

in these data limit our ability to assess longer term trends in hurricane activity before 

the satellite period (Christensen et al. 2013; Hartmann et al. 2013; Knutson et al. 2010; 

Man-Chi, Yeung, and Chang 2006; Seneviratne et al. 2012). Despite the uncertainties in 

the observational record, model projections and atmospheric theory indicate that hurricane 

intensities and rainfall rates will both increase as the climate continues to warm (Melillo, 

Richmond, and Yohe 2014).

Even though some uncertainty remains regarding the effect of a warming climate on 

hurricanes, the health impacts from these storms will almost certainly worsen in the coming 

decades. The two biggest killers from hurricanes–storm surge and freshwater flooding 

will be exacerbated–regardless of the effect on the total hurricane frequency, intensity, or 

duration. Rising sea level will compound the storm surge for future hurricanes (Moser et al. 

2014) and model projections consistently show greater rainfall, and thus freshwater flooding, 

from these storms (Melillo, Richmond, and Yohe 2014). On top of these geophysical effects, 

coastal populations will continue to rise, placing more lives in the paths of these powerful 

storms (Moser et al. 2014).

In addition to more intense precipitation and inland flooding, other hydrologic changes are 

occurring around the globe. The global sea level has risen by more than 20.32 cm (8 inches) 

during the last century for most regions of the world (Church and White 2011). This is 

visually apparent for areas of the U.S. Atlantic and Gulf coasts. Along with the increased 

risks that occur from storm surge during landfall of hurricanes and tropical storms, nuisance 

flooding is now an issue for numerous coastal communities due to increased sea levels (Bell 

et al. 2016). “Sunny day flooding” is tidal flooding of low-lying areas that causes disruption 

to road access and storm drains. There is an increasing trend in sunny day flooding for many 

parts of the United States. Since 1994, the risk of nuisance flooding has increased by over 

500% for Miami, FL, due to sea-level rise (Sweet et al. 2016).

May 2015 was the wettest month on record in Texas and Oklahoma (NCEI 2015). While this 

event ended an ongoing severe drought, it also resulted in widespread loss of life from flash 

floods and property damage in excess of $2 billion (NCEI 2017). In August 2016, a historic 

flooding event affected Louisiana, with 20 to 30 inches of rainfall occurring over several 

days and exceeding 1-in-500-year amounts in some locations. Damages were estimated 

at $10 billion (NCEI 2017). In early October 2015, torrential rainfall caused catastrophic 

flooding in South Carolina with damages around $2 billion (NCEI 2017). Both the all-time 

24-hr and 5-day state rainfall records were broken. During October 7–9, 2016, Hurricane 

Matthew dumped torrential rain along the southeast coast. Eastern North Carolina was most 

heavily impacted, with many locations receiving more than 10 inches and a few locations in 

Bell et al. Page 13

J Air Waste Manag Assoc. Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



excess of 18 inches, causing major flooding. Overall damages from this event were around 

$10 billion (NCEI 2017). These events reflect a significant increase in extreme precipitation 

events across the United States Figure 6 shows a time series of an extreme precipitation 

index for 4-day accumulations exceeding an average recurrence interval (ARI) of 5 years. 

Since the 1970s there has been a pronounced upward trend. All of the top five highest years 

have occurred since 1998. Since 2000, there has been only one below-average year (2012).

Health effects

The direct health hazards from extreme precipitation events include drowning, physical 

trauma, and death related to floods, storms, and hurricanes (Alderman, Turner, and Tong 

2012; Du et al. 2010; Lane et al. 2013). Hurricane-related hazards directly caused 2,170 

deaths in the United States during 1963–2012 (Rappaport 2014; Rappaport and Blanchard 

2016). Associated storm waters were by far the greatest risk accounting for about 70% of 

those deaths, roughly equally split between storm surge and inland flooding related to rain. 

While flash flood events are more likely to occur in rural areas (Špitalar et al. 2014), the 

effects of a single event in an urban area can be far more detrimental as its impacts affect 

more people both directly and indirectly as a result of critical infrastructure failures (Klinger, 

Landeg, and Murray 2014). As an example, nearly half of the deaths related to storm surges 

between 1963 and 2012 were caused by the levee failure in New Orleans during Hurricane 

Katrina.

As staggering as those numbers are, the hazards from hurricanes do not subside as quickly 

as the wind and water. These indirect hazards can be harder to quantify, but Rappaport and 

Blanchard (2016) looked at the storms that caused 90% of the direct deaths in the last 50 

years, and indirect deaths accounted for 44% of the total deaths. The leading causes of these 

indirect deaths were increases in cardiovascular mortality in a storm’s wake, deaths related 

to evacuations, and vehicular accidents.

Like many climate-related hazards, hurricanes are particularly devastating to vulnerable 

populations. Most of the victims of the levee failure in New Orleans during Katrina were 

low-income, older adults, and people of color (Luber et al. 2014). The health impacts from 

Katrina also lingered long after the waters receded. Many evacuees never returned to New 

Orleans, placing strain on health systems around the country (Luber et al. 2014). Exposure 

to extreme events affects mental health as individuals experience the stress, trauma, and 

displacement related to an event (Felton, Cole, and Martin 2013; Ruggiero et al. 2012; 

Tracy, Norris, and Galea 2011). Of those who experienced Hurricane Katrina, whether as 

a child, adult, or first responder, there were heightened symptoms of depression, anxiety, 

posttraumatic stress disorder (PTSD), and suicide (Galea et al. 2008; La Greca et al. 

2010; Osofsky et al. 2009; Pietrzak et al. 2013). They also demonstrated other health 

consequences, such as adverse birth outcomes including preterm birth, low birth weight, and 

maternal complications (Luber et al. 2014).

Increased heavy precipitation events worsen air quality both indoors and outdoors. Extreme 

precipitation events can result in building damage, allowing water and moisture entry to 

indoor spaces, providing an environment for mold growth and increase in other aeroallergens 

that trigger allergic rhinitis and asthma (Clark et al. 2004; IOM 2011; Johanning et al. 2014). 
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Aeroallergens outside may also be heightened as a result of osmotic ruptures when heavy 

precipitation occurs during the pollen season, known as “thunderstorm asthma” leading to 

a spike in aeroallergen concentrations and increasing the number and severity of allergic 

illness (Cecchi et al. 2010; D’Amato, Liccardi, and Frenguelli 2007). The effects of such an 

event were demonstrated in Melbourne, Australia, in November 2016, when a thunderstorm 

led to 8,500 people hospitalized for respiratory illnesses, overwhelming emergency health 

departments and ambulatory systems (Woodhead 2016).

Extreme precipitation events can lead to increased incidence of diseases carried by vectors 

as habitable environments are altered. For example, climate change may increase rodent 

populations in indoor environments as increases in extreme precipitation events drive 

rodents to shelter indoors (Bezirtzoglou, Dekas, and Charvalos 2011), increasing risk of 

transmission of pathogens like hantaviruses (Klein and Calisher 2007; Reusken and Heyman 

2013; Watson et al. 2014). Additionally, precipitation events transport human waste, animal 

waste, or agricultural runoff into drinking-water sources (Murphy et al. 2017; Trtanj et al. 

2016). Households drinking untreated water from private wells or municipalities without 

disinfection face elevated gastrointestinal illness risks (Gleason and Fagliano 2017; Uejio et 

al. 2014). Similarly, extreme precipitation events can overwhelm the capacity of combined 

sewer systems that collect runoff, sewage, and waste. Untreated effluent is discharged into 

nearby drinking water sources and other waterbodies. In the U. S. state of Massachusetts, 

precipitation increased gastrointestinal illness in communities accessing treated drinking 

water impacted by combined sewer overflows (Jagai et al. 2015).

Moving forward

Climate and weather conditions have historically been known as a controlling factor 

of conditions that regulate human health (Brown 1873; Hippocrates 1978). As our 

understanding of climate change becomes more comprehensive, the focus on understanding 

the relationship that climate has on human health becomes more important.

This paper highlights changes in selected extreme events and discusses some of the potential 

impacts that these changes can have on human health. The goal of this paper was not to 

provide a complete description of the ways human health is affected by extreme events, 

but to illustrate the interconnectedness of climate to health. As demonstrated in this paper, 

there are various ways that interactions between changes in climate and human health can 

manifest. Some of the health outcomes are more direct, such as individuals who suffer loss 

of life from flooding. Other health outcomes are more delayed or indirect to changes in the 

environment, such as changes in vector ecology that affect disease spread. There are also 

factors that result in changes in an individual’s environment that can cause stress that may 

lead to a negative health outcome. For example, the additional stress of losing a home or 

livelihood due to an extreme event could exacerbate an underlying mental health condition 

(Loughry 2010). These are just a few examples of the health relationships and pathways that 

come about from extreme events.
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Research gaps

Work is still needed to identify the various ways human health is affected by extreme 

events in a changing climate. Although many pathways between extreme events and health 

outcomes have been established, there is still a need to construct specific pathways that 

account for regional differences. Each location has its own vulnerabilities and environmental 

concerns that might reduce or exacerbate health issues. Identifying these differences can 

help local public health officials develop the tools necessary for issuing effective early 

warnings or capitalizing on opportunities to mitigate impacts. Understanding these pathways 

is especially important for the indirect or delayed health effects, as there can be more 

external factors that influence health outcomes. Constructing the pathways based only 

on historical examples may be misleading and may not create a complete picture of 

potential health threats. As extreme events continue to become more severe and frequent, 

the historical normal will no longer be an accurate reference for understanding these 

relationships. Extreme events can potentially present themselves in tandem. This could 

occur in a number of possible scenarios. For example, a region could experience reoccurring 

exposures, such as severe droughts or flooding rains, in a relatively short time frame that 

is outside the historical probability. Different types of extreme events could cascade or 

coincide to create additional hazards. An example of this is a severe heat event that follows 

the disruption of the electricity provision caused by a hurricane. Populations or communities 

that are adapted to dealing with singular events that manifest in a typical way could be 

unable to cope with the repeated stress of these new hazards. Understanding potential 

outcomes of these scenarios for different locations will help health departments and local 

managers to prepare for these events.

Comparatively less work examines the influence of extreme events on long-term compared 

to acute health outcomes. For example, waterborne disease infections may cause increased 

risk of sequelae like appendicitis, enteritis, colitis, and noninfective gastroenteritis (Moorin 

et al. 2010). Similarly, mosquito-borne diseases may cause long-term cognitive, functional, 

and movement disorders (Hughes, Wilson, and Sejvar 2007). Many case studies document 

the chronic psychologic dysfunction of survivors of catastrophic extreme events (e.g., 

hurricanes, floods, drought) (Barreau et al. 2017; Bei et al. 2013; La Greca et al. 2010). 

However, there is less systematic evidence of the mental health impacts of less severe 

but more common extreme events. Existing public health surveillance systems are targeted 

toward emergency facilities instead of clinics that provide a majority of mental health care 

(Buehler et al. 2008). Similarly, health studies may have difficulty documenting the “slow 

violence” of extreme events that evolve over long periods such as drought or sea-level rise 

(Nixon 2011).

Although a good deal of research has gone into understanding the health outcomes of 

extreme events, work is still needed on understanding the ability of health departments and 

health care facilities to respond to the issues that arise from more frequent and intense 

extreme events. Health care facilities need to maintain operations during and after extreme 

events, because they treat the traditional patient population and those affected by the storm. 

By understanding these risks to health care facilities, staff members and emergency planners 

can develop strategies to be more resilient to future events. To accurately improve resiliency, 
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health care facilities may investigate local infrastructural vulnerabilities and preparedness 

policies to insure operations can withstand disruptions during and after different extreme 

events. There are multiple examples of health care facilities being disrupted by extreme 

events (e.g., overcrowding, loss of power, lack of access, reduction of staff). In addition 

to the traditional challenges, many hospitals are inconveniently located in the areas and 

regions that are experiencing changes in extreme events. For example, multiple hospitals are 

near coastal areas that are prone to tropical storms, hurricanes, and storm surge. Without 

proper preparedness, these hospitals will be less likely to maintain operations when the need 

is the greatest. In the end, resiliency in our health care facilities will reduce and prevent 

loss of life. Some work has already been developed for health care facilities to understand 

the risks of climate change on system operations (https://toolkit.climate.gov/topics/human-

health/building-climate-resilience-health-sector).

Novel research initiatives

Contemporary research is investigating how communities adapt to extreme events and 

take advantage of opportunities for recovery (Bousquet et al. 2015). For example, Joplin, 

MO, recovered from a 2011 violent tornado (EF4) that injured more than 1,000 people 

and demolished parts of the city. Coordinated institutional, government, and private-sector 

programs rebuilt infrastructure, sustained jobs, and augmented childhood psychological 

support services to speed recovery (Coles, Zhang, and Zhuang 2016; Kanter and Abramson 

2014; Svendsen et al. 2014). Nonetheless, some survivors continue to suffer lingering 

trauma (Houston et al. 2015). New exposures can also manifest after the disaster occurs 

(Neblett Fanfair et al. 2012). The recovery of these research areas after extreme events is 

likely to be less clear (LaKind et al. 2016).

Over the past decade, research investigated extreme events, critical infrastructure, and 

human health (Satumtira and Duenas-Osorio 2010). For example, Hurricane Sandy 

flooded large portions of New York City in 2012 and damaged critical electricity 

infrastructure. The cascading impacts of electricity loss included hospital and subway 

closures, telecommunication outages, halted pipeline fuel distribution, and food delivery 

disruption (Haraguchi et al. 2016). The total number of excess deaths increased immediately 

after the event and remained elevated for 2 months (Howland et al. 2014). Understanding 

these relationships and pathways is key to reducing health impacts.

An emerging area of research in climate science is the detection and attribution of climate 

change on extreme events (Easterling et al. 2016). This work allows us to understand 

the role of climate change on current extreme events. “Detection” is the identification of 

whether there is a statistically significant change in this case, in a particular type of extreme 

event occurrence. For example, has extreme precipitation increased over North America in 

the past century? “Attribution” science evaluates the various causal factors that may have 

contributed to the change, in particular, the possible influence of anthropogenic climate 

change. There are many drivers for any extreme event that could be responsible for changes 

over time, and one of them is anthropogenic climate change. Scientists engage in attribution 

research for the same reason we have always studied our weather, which is, if we can 

understand what is causing our weather we can improve our ability to predict it in the future. 
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This allows us to then improve planning and preparedness activities, including those for 

ensuring public health.

Interestingly, some of the methodology for attributing the change in event risk due to 

climate change was drawn from public health epidemiology. In particular, the attribution 

community uses the concept of the fraction of attributable risk (FAR) (Jaeger et al. 2008). In 

epidemiology, attributable risk is the difference in the rate of a health condition between an 

exposed population and an unexposed population. In extreme event attribution, the “exposed 

population” is the world as it is with increased greenhouse gas emissions. Using models, 

researchers compare this to an “unexposed population,” or a world in which humans have 

not emitted greenhouse gases causing global warming. However, like epidemiology, results 

are necessarily probabilistic and not deterministic. If a smoker gets lung cancer, medical 

science tells us that the attributable risk that the smoking caused the lung cancer is high. 

However, it is still possible that the person would have developed lung cancer if that person 

had never been a smoker. For public health, the important finding is that smoking increases 

your risk of lung cancer and smoking has a high cost to society. Similarly, for event 

attribution, the important result is often knowing that climate change is in fact changing 

our risk exposure to a particular extreme event and to what extent, so we can assess the 

overall cost to society and sectors such as public health. Extreme event attribution has 

clearly demonstrated that the risk for some event types is changing because of human-caused 

climate change (BAMS Explaining Extreme Events reports from 2011–2015). In addition to 

addressing whether climate change did or did not play a role in any specific event, event 

attribution science also strives to quantify that impact. The next step with this research 

is trying to combine extreme event attribution with societal and economic outcomes to 

determine the role climate change has on producing excess health burdens and costs (Ebi et 

al. 2017; Mitchell et al. 2016).

Conclusion

There is a high level of confidence that key extreme events discussed in this paper are 

changing and expected to continue to change in the future. These events include heat waves, 

precipitation, hurricanes, droughts, and wildfire. The outcomes of these changes are likely to 

have a variety of impacts on human health and economic losses. Some of the associations 

between extreme events and health are already understood and the linkages are established. 

However, many opportunities exist for exploring additional linkages and pathways because 

of the variety of ways that these events can affect human health outcomes. The health 

impacts are direct, indirect, and delayed, which can make it difficult to account and estimate. 

Incorporating this information into planning efforts can help improve preparedness and 

reduce impacts. In order to advance our understanding of changes in frequency and intensity 

of extreme events on human health, there is a variety of research that could improve our 

understanding of the health implications.
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Figure 1. 
The location and type of the 15 weather and climate disasters in 2016 with losses exceeding 

$1 billion (NCEI 2017).
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Figure 2. 
Time series showing the number (bar height) and type (bar color) of billion-dollar weather 

and climate disasters in the United States since 1980. The gray line shows total annual costs. 

The black line shows the running 5-year average. All cost lines CPI-adjusted to 2016 dollars 

(NCEI 2017).
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Figure 3. 
Annual percentage of the United States with maximum temperatures (upper graph) and 

minimum temperatures (lower graph) much above normal (upper 10th percentile; red) and 

much below normal (lower 10th percentile; blue). Updated from Gleason et al. (2008).
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Figure 4. 
Annual time series (1895–2016) of heat-wave index averaged over United States. Heat-wave 

events are defined as 4-day periods with the average temperature exceeding the threshold 

for a 1-in-5-years recurrence interval. The heat-wave time series is dominated by the events 

of the 1930s. The heat during this period was exacerbated by severe drought and poor land 

management practices, which denuded large areas of vegetation in the Great Plains. Thus, 

the normal cooling afforded by transpiration from vegetation was largely absent. The period 

from the mid 1950s through the 1970s was characterized by a very low number of events. 

Since then, there has been a gradual increase in the number of events. Over the past 10 

years, values have been near to above normal. Bold horizontal line at 0.20 indicates the 

long-term average. Figure inset shows the trend in heat-wave index over the United States 

during 1950–2016. (Data source: NOAA’s NCEI.)
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Figure 5. 
Annual time series (1895–2016) of cold-wave index averaged over United States. Cold-wave 

events are defined as 4-day periods with the average temperature being less than the 

threshold for a 1-in-5-years recurrence interval. The cold-wave time series exhibits high 

year-to-year variability. This reflects the occasional occurrence of intensely cold air masses 

usually originating in Siberia that affect large swaths of the United States. The large area 

covered by these infrequent events dominates the time series. The intense cold causes a wide 

range of severe impacts. A key feature of this time series is the rather low values since the 

mid 1990s. Since then, there have been no cold waves with the intensity and areal coverage 

that are characteristic of the historic cold waves in the earlier record. Bold horizontal line at 

0.20 indicates the long-term average. Figure inset shows the trend in cold wave index over 

the United States during 1895–2016. (Data source: NOAA’s NCEI.)
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Figure 6. 
Annual time series (1895–2016) of extreme precipitation index averaged over United States. 

Extreme precipitation events are defined as rainfall accumulations over 4-day periods 

exceeding the threshold for a 1-in-5-years recurrence interval. Bold horizontal line at 0.20 

indicates the long-term average. Figure inset shows the trend in extreme precipitation over 

the United States during 1895–2016. (Data source: NOAA’s NCEI.)

Bell et al. Page 36

J Air Waste Manag Assoc. Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Infrastructure impacts
	Economic loss
	Population of concern

	Temperature extremes
	Observed changes
	Health impacts

	Droughts and wildfires
	Observed changes
	Health impacts

	Extreme precipitation, flooding, and hurricanes
	Observed changes
	Health effects

	Moving forward
	Research gaps
	Novel research initiatives

	Conclusion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.

